61 research outputs found

    Optimal Cooperative Multiplayer Learning Bandits with Noisy Rewards and No Communication

    Full text link
    We consider a cooperative multiplayer bandit learning problem where the players are only allowed to agree on a strategy beforehand, but cannot communicate during the learning process. In this problem, each player simultaneously selects an action. Based on the actions selected by all players, the team of players receives a reward. The actions of all the players are commonly observed. However, each player receives a noisy version of the reward which cannot be shared with other players. Since players receive potentially different rewards, there is an asymmetry in the information used to select their actions. In this paper, we provide an algorithm based on upper and lower confidence bounds that the players can use to select their optimal actions despite the asymmetry in the reward information. We show that this algorithm can achieve logarithmic O(logTΔa)O(\frac{\log T}{\Delta_{\bm{a}}}) (gap-dependent) regret as well as O(TlogT)O(\sqrt{T\log T}) (gap-independent) regret. This is asymptotically optimal in TT. We also show that it performs empirically better than the current state of the art algorithm for this environment

    Sensing as a Service in 6G Perceptive Mobile Networks: Architecture, Advances, and the Road Ahead

    Full text link
    Sensing-as-a-service is anticipated to be the core feature of 6G perceptive mobile networks (PMN), where high-precision real-time sensing will become an inherent capability rather than being an auxiliary function as before. With the proliferation of wireless connected devices, resource allocation in terms of the users' specific quality-of-service (QoS) requirements plays a pivotal role to enhance the interference management ability and resource utilization efficiency. In this article, we comprehensively introduce the concept of sensing service in PMN, including the types of tasks, the distinctions/advantages compared to conventional networks, and the definitions of sensing QoS. Subsequently, we provide a unified RA framework in sensing-centric PMN and elaborate on the unique challenges. Furthermore, we present a typical case study named "communication-assisted sensing" and evaluate the performance trade-off between sensing and communication procedure. Finally, we shed light on several open problems and opportunities deserving further investigation in the future

    Waveform Design for Communication-Assisted Sensing in 6G Perceptive Networks

    Full text link
    The integrated sensing and communication (ISAC) technique has the potential to achieve coordination gain by exploiting the mutual assistance between sensing and communication (S&C) functions. While the sensing-assisted communications (SAC) technology has been extensively studied for high-mobility scenarios, the communication-assisted sensing (CAS) counterpart remains widely unexplored. This paper presents a waveform design framework for CAS in 6G perceptive networks, aiming to attain an optimal sensing quality of service (QoS) at the user after the target's parameters successively ``pass-through'' the S&\&C channels. In particular, a pair of transmission schemes, namely, separated S&C and dual-functional waveform designs, are proposed to optimize the sensing QoS under the constraints of the rate-distortion and power budget. The first scheme reveals a power allocation trade-off, while the latter presents a water-filling trade-off. Numerical results demonstrate the effectiveness of the proposed algorithms, where the dual-functional scheme exhibits approximately 12% performance gain compared to its separated waveform design counterpart

    RFormer: Transformer-based Generative Adversarial Network for Real Fundus Image Restoration on A New Clinical Benchmark

    Full text link
    Ophthalmologists have used fundus images to screen and diagnose eye diseases. However, different equipments and ophthalmologists pose large variations to the quality of fundus images. Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis. Thus, real fundus image restoration is worth studying. Unfortunately, real clinical benchmark has not been explored for this task so far. In this paper, we investigate the real clinical fundus image restoration problem. Firstly, We establish a clinical dataset, Real Fundus (RF), including 120 low- and high-quality (HQ) image pairs. Then we propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images. The key component in our network is the Window-based Self-Attention Block (WSAB) which captures non-local self-similarity and long-range dependencies. To produce more visually pleasant results, a Transformer-based discriminator is introduced. Extensive experiments on our clinical benchmark show that the proposed RFormer significantly outperforms the state-of-the-art (SOTA) methods. In addition, experiments of downstream tasks such as vessel segmentation and optic disc/cup detection demonstrate that our proposed RFormer benefits clinical fundus image analysis and applications. The dataset, code, and models are publicly available at https://github.com/dengzhuo-AI/Real-FundusComment: IEEE J-BHI 2022; The First Benchmark and First Transformer-based Method for Real Clinical Fundus Image Restoratio

    In-Orbit Instrument Performance Study and Calibration for POLAR Polarization Measurements

    Full text link
    POLAR is a compact space-borne detector designed to perform reliable measurements of the polarization for transient sources like Gamma-Ray Bursts in the energy range 50-500keV. The instrument works based on the Compton Scattering principle with the plastic scintillators as the main detection material along with the multi-anode photomultiplier tube. POLAR has been launched successfully onboard the Chinese space laboratory TG-2 on 15th September, 2016. In order to reliably reconstruct the polarization information a highly detailed understanding of the instrument is required for both data analysis and Monte Carlo studies. For this purpose a full study of the in-orbit performance was performed in order to obtain the instrument calibration parameters such as noise, pedestal, gain nonlinearity of the electronics, threshold, crosstalk and gain, as well as the effect of temperature on the above parameters. Furthermore the relationship between gain and high voltage of the multi-anode photomultiplier tube has been studied and the errors on all measurement values are presented. Finally the typical systematic error on polarization measurements of Gamma-Ray Bursts due to the measurement error of the calibration parameters are estimated using Monte Carlo simulations.Comment: 43 pages, 30 figures, 1 table; Preprint accepted by NIM

    Stabilizing a Rotary Inverted Pendulum Based on Logarithmic Lyapunov Function

    No full text
    The stabilization of a Rotary Inverted Pendulum based on Lyapunov stability theorem is investigated in this paper. The key of designing control laws by Lyapunov control method is the construction of Lyapunov function. A logarithmic function is constructed as the Lyapunov function and is compared with the usual quadratic function theoretically. The comparative results show that the constructed logarithmic function has higher numerical accuracy and faster convergence speed than the usual quadratic function. On this basis, the control law of stabilizing Rotary Inverted Pendulum is designed based on the constructed logarithmic function by Lyapunov control method. The effectiveness of the designed control law is verified by experiments and is compared with LQR controller and the control law designed based on the quadratic function. Moreover, the system robustness is analyzed when the system parameters contain uncertainties under the designed control law

    Can We Predict a Stock\u27s Price

    No full text
    The stock market presents the individual investor with an opportunity to earn money by investing in equities. However the stock market is stacked in favor of the big investment companies. In this project we presented models to rebalance these odds by creating a tool that can be used by individual investors to predict the short-term price of a stock

    Chemical features and machine learning assisted predictions of protein-ligand short hydrogen bonds

    No full text
    Abstract There are continuous efforts to elucidate the structure and biological functions of short hydrogen bonds (SHBs), whose donor and acceptor heteroatoms reside more than 0.3 Å closer than the sum of their van der Waals radii. In this work, we evaluate 1070 atomic-resolution protein structures and characterize the common chemical features of SHBs formed between the side chains of amino acids and small molecule ligands. We then develop a machine learning assisted prediction of protein-ligand SHBs (MAPSHB-Ligand) model and reveal that the types of amino acids and ligand functional groups as well as the sequence of neighboring residues are essential factors that determine the class of protein-ligand hydrogen bonds. The MAPSHB-Ligand model and its implementation on our web server enable the effective identification of protein-ligand SHBs in proteins, which will facilitate the design of biomolecules and ligands that exploit these close contacts for enhanced functions
    corecore